Плазменная резка - Метрополия

Плазменная резка

Резку металла можно разделить на две категории - механическую и термическую. Плазменная резка - это метод термической резки, при котором для резки металла используется ионизированный газ. Это один из широко используемых методов резки толстых металлических листов, но также он может использоваться для листового металла.

Что такое плазма?

Вы определенно слышали о трех основных состояниях материи — твердом, жидком и газообразном. Но есть и четвертый. Да, это плазма.
Плазму можно найти в природе, но в основном в верхних частях атмосферы Земли. Знаменитое полярное сияние — результат солнечного ветра, созданного из плазмы. Освещение и высокотемпературный огонь тоже включает в себя плазму.
В общей сложности она составляет около 99% видимой Вселенной.
В повседневной жизни мы можем встретить плазму в телевизорах, люминесцентных лампах, неоновых вывесках и, конечно же, в плазменных резаках.

Плазма — это электропроводящее ионизированное газоподобное вещество. Это Голина? Это означает, что в некоторых атомах отсутствуют электроны, и также есть свободные электроны, плавающие вокруг.
Газ можно превратить в плазму, подвергнув его интенсивному нагреву. Вот почему плазму часто называют ионизированным газом.
Плазма похожа на газ, поскольку атомы не находятся в постоянном контакте друг с другом. В то же время она ведет себя аналогично жидкостям с точки зрения её способности течь под воздействием электрического и магнитного поля

Плазменная резка 1
Плазменная резка 2

Как работает плазменный резак?

Процесс плазменной резки — это метод термической резки. Это означает, что для плавления металла используется тепло, а не механическая сила. Общая механика системы всегда одинакова. В плазменных резаках используется сжатый воздух или другие газы, например азот. Ионизация этих газов происходит с образованием плазмы.
Обычно сжатые газы контактируют с электродом, а затем ионизируются для создания большего давления. Когда давление увеличивается, поток плазмы направляется к режущей головке.
Режущий наконечник сужает поток, создавая поток плазмы. Затем он наносится на заготовку. Поскольку плазма электропроводна, заготовка соединяется с землей через стол для резки.Когда плазменная дуга контактирует с металлом, его высокая температура плавит его. В то же время высокоскоростные газы выдувают расплавленный металл.
Преимущества:
• Может резать все токопроводящие материалы. Газовая резка, хотя она также подходит для резки толстых металлов, ограничивается только черными металлами;
• Хорошее качество для толщины до 50 мм;
• Максимальная толщина до 150 мм;
• Может резать в воде, что приведет к уменьшению ЗТВ. Также снижает уровень шума;
• Меньший пропил по сравнению с газовой резкой;
• Более высокая скорость резки, чем при резке кислородом.

Рез косвенным воздействием

Данная технология дает возможность работать с обычными металлами, а также с теми, которые отличаются малой электрической проводимостью, и диэлектриками. При такой обработке источник электроискры находится в резаке, поэтому изделие контактирует только с потоком плазмы. Отметим, что стоимость подобных устройств значительно выше, чем у моделей прямого действия.
Обе разновидности резаков ученые называют плазмотронами, то есть генераторами плазмы.
Резку металла можно производить при помощи устройств промышленного и бытового назначения. В промышленных условиях работают со сложными многофункциональными автоматизированными комплексами или станками с ЧПУ. Тогда как для использования в быту предназначены небольшие аппараты, подключаемые к сети 220 V или 380 V.
Плазменно-дуговая резка отличается такими характеристиками:
• Температура потока в пределах +5 000…+30 000 °C. Конкретная цифра зависит от обрабатываемого материала – минимальные температуры используются при работе с цветными металлами, а верхние показатели позволяют обрабатывать тугоплавкие стали.

• Скорость потока в пределах 500–1500 м/с. Она подбирается под требования конкретного вида резки, при этом оценивается толщина заготовки, материал, тип распила (прямой либо криволинейный), продолжительность работы системы.

• Газ для плазменной резки. С черными металлами работают при помощи активной группы, куда входят кислород (O2) и воздух. Обработка цветных металлов и сплавов предполагает использование неактивной группы, а именно азота (N2), аргона (Ar), водорода (H2), водяного пара. Кислород окисляет цветные металлы, то есть запускает их горение, поэтому их обрабатывают в среде защитных газов. Также за счет изменения состава газовой смеси удается поднять качество обработки.

• Ширина разреза. В данном случае работает одно правило: при росте показателей повышается ширина реза. На нее влияют толщина и вид металла, диаметр сопла, сила тока, количество используемого газа и скорость обработки.

Плазменная резка 1


• Производительность, которая зависит от скорости резки. Так, бытовые агрегаты в соответствии с ГОСТ ограничены показателем 6,5–7 м/мин (~0,11 м/сек). Производительность резки зависит от толщины, вида металла, скорости струи газа. Нужно понимать, что увеличение размеров заготовки приводит к снижению скорости обработки.
Выделают три вида плазменной резки в зависимости от используемой среды:
• Простой, где в процессе обработки используется воздух (или азот) и электрический ток.
• С газом, который может быть плазмообразующим или защитным. Второй необходим, чтобы не допустить воздействия окружающей среды на зону реза и повысить качество раскроя.
• С водой, тогда жидкость заменяет защитный газ, а также охлаждает элементы системы и удаляет вредные выделения.